RCU Review: Hangar 9 Clipped Wing Taylorcraft

Contributed by: Erick Royer | Published: December 2002 | Views: 41979 | Email this Article | PDF

Clipped Wing Taylorcraft ARF

By Erick Royer
eroyer@rcuniverse.com

PRODUCT INFORMATION

<table>
<thead>
<tr>
<th>Product</th>
<th>Email</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>H9 TAYLORCRAFT</td>
<td>EMAIL (714) 963-0329</td>
<td></td>
</tr>
<tr>
<td>ZENOAH G-23 ENGINE</td>
<td>EMAIL (714) 963-0329</td>
<td></td>
</tr>
<tr>
<td>SERVOS</td>
<td>EMAIL (858) 748-6948</td>
<td></td>
</tr>
<tr>
<td>MASTER AIRSCREW</td>
<td>EMAIL (800)848-9411</td>
<td></td>
</tr>
<tr>
<td>DUBRO</td>
<td>EMAIL</td>
<td></td>
</tr>
<tr>
<td>TME</td>
<td>Fax To: (707)-313-1489</td>
<td></td>
</tr>
<tr>
<td>SULLIVAN PRODUCTS</td>
<td>EMAIL (410)732-3500</td>
<td></td>
</tr>
<tr>
<td>TRU-TURN SPINNERS</td>
<td>EMAIL (281)479-9600</td>
<td></td>
</tr>
</tbody>
</table>

SPECIFICATIONS

USED IN THIS REVIEW
Wingspan: 85 1/2”
Length: 67”
Wing Area: 1315 sq. in.
Weight: 14.25 lbs
Engine: .108 - 1.48 2c
.120 - 1.80 4c
G-23 Gas
Servos: 3 Standard, 2 High Torque, 1 Mini
Transmitter: Futaba 9CAP
Retail Price: $379.95
Manufacturer: Hanger 9
Distributor: Horizon Hobby

ENGINE:
- Zenoah G-23

RECEIVER:
- 7 channel FM

SERVOS:
- 3 Hitec HS-425BB / 2 Hitec HS-605BB / 1 Hitec HS-81

BATTERY:
- 6v 1100mAh NiMh

PROP:
- 16x8 Master Airscrew

SMOKE:
- TME Simple Smoke System

EXTENSIONS:
- 12” Extensions(2)

INTRODUCTION

The Hangar 9 Clipped Wing Taylorcraft ARF is a replica of a one-of-a-kind full-scale airplane built by renowned aircraft restoration expert, Jim Moss. The Clipped Wing Taylorcraft was flown by Margaret Ritchie when she won the National Aerobatics Advanced Class title in 1961. Designed after Ms. Ritchie's plane, Jim Moss added several distinct touches of his own resulting in a classic piece of aviation history. Jim's T-Craft is the only one of its kind in the world.

Jim Moss's Taylorcraft has been reproduced by Hanger 9 with incredible scale-like detail including the prepainted cowl with molded intakes and air scoops already cut and smoothly finished. Simulated louvers are molded into the fiberglass for added realism.

The Taylorcraft is covered in Ultracote including the checkerboard pattern on the bottom of the wing. This checkerboard is available in rolls of Ultracote.

The Taylorcraft arrives in a very large colorful box measuring 53” x 14” x 17”. I was very pleased with the way the kit was packaged. Each of the major components were packaged in plastic and nestled in their own reinforced compartments. All the parts supplied are easy to identify and all hardware is bagged according to the assembly steps.

I took special note at the very high quality of the components in this kit. The covering is flawless. I could not find a single blemish, wrinkle, or bubble. The fiberglass parts were expertly painted and matched the covering perfectly. The kit comes with a heavy-duty aluminum engine mount if you decide to go with a 2 or 4-stroke engine. Both the wing and fuselage are very nicely constructed, with high grade balsa and aircraft plywood.

Needless to say I could not wait to get started on this airplane.

CONSTRUCTION

INSTRUCTION MANUAL: The Taylorcraft comes with a 55 page instruction manual that takes you through each step of the assembly process in great detail. There are a lot of pictures throughout the manual to walk you through each step. One nice feature of all the Hanger 9 manuals that I have seen is that each assembly step has a box at the top of the page telling you what parts and tools are needed. My manual had two addendum sheets inserted with some corrections and additional instructions.

In my opinion, this kit should be easy to assemble for any modeler with a little experience assembling an ARF. If you read through the manual completely before you begin, the assembly process is much easier.
WING ASSEMBLY: The wing assembly begins with hinging the ailerons to each wing half. They come already in place with CA hinges inserted in the slots. I carefully removed the ailerons from each wing panel and placed a T pin through the center of each CA hinge. This would ensure that the same amount of hinge went into the wing and aileron. I slid the ailerons back in place and applied a few drops of thin CA and set it aside to dry. Once the CA has cured, grasp the ailerons and move them several times in each direction to free up the hinges while at the same time ensuring that they are held securely in the wing.

The next step is to join the two wing halves together. This is done by sliding the hardwood wing joiner into the slot on each wing panel. I first test fit them to make sure no trimming was needed. I was happy that everything fit perfectly and snug. I used a Great Planes Woodpecker on both sides of the wing joiner to help add strength to once epoxy is applied. I joined both wing halves together with 30 minute epoxy and taped them in place. The wing has no dihedral, so it can be left flat on a bench while drying.

Next, I located the openings in the wing for the aileron servos. The covering needed to be trimmed to expose the servo mounting hole. I used my iron to seal the covering around the opening. I decided to use standard Hitec HS-425BB servos for each aileron. They are attached in the opening with with screws supplied with the servo. A 12" servo extension will be required for each servo to feed the wire through the wing. Be sure to secure the connection with either electrical tape or heat shrink tubing.

Next I installed the control horns on each aileron. The manual shows the horn to be attached with 2 screws. The horns that were in my kit were designed for 3 screws, but the kit only contained enough for 2. While this is not a major problem, it did concern me. I installed them with the 2 screws closest to the vertical part of the horn. I did not use the outer hole as I did not have any screws in my workshop that were the correct size.

The kit comes with very nice 4-40 hardware for pushrods as well as Sullivan clevises. I assembled them according to the instructions and attached them to the servo using Dubro Heavy Duty Servo Horns.
The final step was to mount the wing to the fuselage. Before you can do this you must first attach the leading edge piece to the opening in front of the windshield former. The block is tapered so you must be sure to install it correctly. I held it in place with 5 minute epoxy and clamps. Next place the wing on the fuselage and drill through the holes in the fuselage and into the wing for the dowels. Be sure not to drill completely through the wings leading edge. Install the wooden dowels with 5 minute epoxy and cut them to the proper length.

Next place the wing bolt plate on at the rear of the wing and trace around it with a pencil. Remove the covering roughly 1/8" inside the line. Attach the plate with 5 minute epoxy. Ensure the wing is square to on the plane by measuring from outer edge of the aileron to the tail of the plane. Drill through the wing bolt plate and into the wing hold-down block. Insert blind nuts in the hold-down block and secure them with a couple drops of thin CA. Using the supplied strip of Ultracote, cover the center seam on the wing.

TAIL SURFACES: Next, locate the horizontal stabilizer. Remove the covering in the top rear of the fuselage and in the notch on the front of the stabilizer. Line the horizontal stabilizer in the opening on the fuselage and mark the covering on the bottom surface along the fuselage. Remove the covering from the stabilizer 1/8" inside the lines.

Next place the vertical stabilizer into the opening in the fuselage and check to see if everything is aligned properly. Mark the stabilizer along the fuselage and remove the covering. Using 30 minute epoxy, attach the horizontal and vertical stabilizers to the fuselage. The whole assembly "locks" together and forms a nice fit. Check that the vertical stabilizer is 90 degrees to the horizontal stabilizer. Hold everything in place with masking tape.

Attach each elevator half to the the horizontal stabilizer using the CA hinges in the same manner as attaching the ailerons mentioned above.

At this time you need to make provisions to install the supplied tail wheel. Due to personal preference, I chose to use a Sullivan Tail Wheel Assembly rather than the supplied bent wire tail wheel. The rudder is now attached with CA hinges like the elevator and ailerons.

Next, mark and install the control horns on each elevator half and the pull-pull horns on the rudder. Again these horns were the same as the ailerons, requiring a 3rd screw that is not included in the kit.
LANDING GEAR: With the fuselage upside-down, measure 3 5/8" back from the firewall and make a mark. This will indicate where the front of the landing gear will line up. Drill 4 holes through the landing gear and fuselage. Install the landing gear with 4 screws. A nut is attached to each on the inside of the fuselage.

The next step is to install the wheel pants, wheels and axles to the landing gear. Begin by locating the hole in each wheel pant where the axle will pass through. Epoxy the plywood block inside the wheel pant. Be sure to make a right and left wheel pant. Install the axle to the landing gear and attach the wheel and wheel pant with the supplied collars.

Before installing the wheel pant retainer screw, bend the metal straps to a 45 degree angle and attach to the landing gear using the wheel pant retainer screw. Install 2 more straps in the center of the landing gear base. Locate the "J" shaped pieces of music wire and install a clevis one end. This wire is connects between the 2 straps on each side of the landing gear. I was not too keen on these music wire retainers from the beginning. The instructions want you to use a nylon clevis on one end. In the event of a hard landing, I would be afraid that they would pop off. I installed metal clevises and would later discover that they still pop off during taxing and landing. I have since eliminated them completely.
ENGINE: You have many choices for power on the Taylorcraft from 1.08 to 1.48 size 2-strokes and 1.20 - 1.80 4-stroke glow engines or a gas engine. Much of the decision on the power plant will be based on your flying intentions. I plan on flying this aircraft in a scale manner. I also wanted to install a smoke system so decided to use the Zenoah G23 gas engine. This engine is known to be highly reliable and will develop the heat needed in the muffler to produce good smoke.

The manual has 2 separate sections that deal with installing the engine. I used the instructions that pertained to the G23 installation. There was a half page dedicated to some corrections to the manual in one of the addendums. It appears that the manual did not include the instructions on the mounting hole locations in the firewall. The addendum walks you through this process.

A really nice feature with this kit is the included mounting stand-offs that are included specifically for the Zenoah G23 engine. These stand-offs provide the correct spacing between the firewall and prop hub to allow the correct cowl clearance. Once the holes are drilled, you will need to install 4 blind nuts into the backside of the firewall. I ran into a small problem during this step. 2 of the holes ended up right behind the shelf for the fuel tank. I had to cut away some of the plywood on this tray to be able to install the blind nuts. This took a bit of time because there was not enough space to get a Dremel tool in there, so I had to use an Xacto knife and whittle away at it. I attached the G23 to the firewall with the supplied stand-offs and mounting bolts.

Next I assembled the fuel tank. Because I was using a gas engine I changed the fuel line to gas fuel tubing. I decided to use a 2 line system and install a "T" in the supply line to the carburetor for filling and draining the tank. The stopper that is included with the tank is designed for use with both gas and glow fuel. The tank is installed on the tray in the front of the fuselage. I installed some foam around the tank for protection and to minimize vibration. I completed the installation by gluing a small balsa block behind the tank to be sure that it would not slide out.

SMOKE SYSTEM: I decided to install a TME Simple Smoke System into the Taylorcraft. This system runs on its own 4.8 volt battery pack and it connects to an auxiliary channel on the receiver. In my case I used the landing gear channel (Ch 5).

I installed the smoke pump and controller under the fuel tank in the front of the fuselage. The battery would be installed under the receiver on the servo tray. I used a 12 oz. tank that I installed right at the CG on the bottom floor of the fuselage. The tank is held in with tie straps and double sided foam tape. This tank also uses 2 lines. The feed/supply line connects to the Dubro fuel filler valve then goes to the feed side of the pump. Standard gas fuel line is used here. The vent/overflow line exits through a hole in the fuselage.
The output side of the smoke pump is connected to the muffler. I had to drill and tap the muffler for a feed nipple. I located it as close to the engine as I could. I had to use a special high heat fuel line for this connection.

SMOKE PUMP INSTALLED

SMOKE TANK INSTALLED ON THE CG

RADIO/SERVO INSTALLATION: Up to this point the aileron servos are already installed as are the control horns on all the tail surfaces. The throttle, elevator, rudder, and throttle kill servos are left.

The Taylorcraft has a nice plywood servo tray with plenty of room for standard size servos to be installed. I decided to install a Hitec HS-605BB high torque servo for the rudder and elevator. I used a standard Hitec HS-425BB servo for the throttle and a Hitec HS-81 mini servo for the throttle kill.

It is necessary to install 2 plywood spacers under the elevator servo to raise it high enough for proper clearance with the rudder's pull-pull cables. The throttle and rudder servos are installed in tray next. It was necessary to make a small plywood rail for the Hitec HS-81 throttle kill servo. I installed it in the opening next to the throttle servo.

Next, I assembled the elevator pushrod as instructed in the manual. It consists of a hardwood square rod with a single pushrod installed on one end and 2 pushrods forming a "Y" a the other end. You will need to predrill holes to accept the pushrod on either end of the hardwood rod. When I assemble these types of pushrods I always wrap the wood/wire connection with sewing thread and then coat it with thin CA. Doing this will ensure a trouble free connection. I used two plastic pushrod tubes to aid in getting the elevator pushrod through the fuselage. I slid the tubes though the slots on either side of the rear fuselage and into the cabin. I then slide each wire from the "Y" into a tube. As I push the rod through the fuse, I pull on the rods. This process keeps the rods from hanging up on the formers inside the fuselage.
Now that the pushrod is in place, I connected the clevises to each elevator control horn using the supplied Sullivan clevises and keepers. I connected the other end of the pushrod to the servo also using the supplied Sullivan clevis and keeper.

The rudder is setup with a pull pull cable system. The included pull pull cables require you to solder the threaded ends to the wire. I deviated from the kit and decided to use a Dubro 4-40 Pull Pull system instead. I have used them before with much success. They rely on a crimped connection rather than a soldered connection. Again I used a couple pieces of push rod tubes to help route the cables though the fuselage. Each end of the cable is attached to their respective horns with the supplied Sullivan Clevises.

The throttle linkage is setup next. I installed the pushrod tube in the firewall after locating and drilling a hole that was inline with the carburetor. I used some thick CA to hold the tube in place on the firewall. It will be necessary to install a plywood support to the front of the servo tray to keep the throttle pushrod from flexing too much. This is fastened to the servo tray with thick CA. Next I slid the plastic nyrod through the tube and attached a plastic clevis to the carburetor and a used a Z-bend to attach to the throttle servo horn. I backed off the throttle stop screw on the engine as I would not be using it. With my Futaba 9CAP (and most other computer radios) I was able to adjust the servo end points accordingly.

The last servo to connect is the throttle kill servo. This will not be necessary if you decide to install a glow powered engine. Because I decided to use the Zenoah G23, it will be necessary to install some kind of throttle kill mechanism. I could setup my throttle servo to choke off the carb much in the same fashion as with a glow engine, but with the potential for a gas engine to run much longer on a tank of fuel if the the throttle servo fails, I thought I should add some backup protection. I installed a throttle kill switch to one of the engine stand off spacers. A second pushrod was installed through the firewall and the other end was attached to the HS 81 micro servo. I set this servo up on channel 6 with an on/off switch to activate it. It was necessary to adjust the end points on this channel because the servo did not need to move that much to activate the micro switch.

At this time I installed the 4.8 volt 600 mAh battery back for the smoke system to the servo tray just in front of the servos. I applied a piece of double sided foam tape to the top of the battery and placed the receiver on top of the battery. I then attached both of them to the servo tray with a zip tie. I installed the 4.8 volt 1100 mAh battery right under the servo tray in the same position as the receiver.

There are two switch harnesses installed on this model. There is one that goes through the fuselage side with a Dubro Quick Switch Charge Jack for the receiver, and the other is a Dubro Switch only assembly that is installed under the cowl to provide a manual throttle kill. This switch is also important because it allows you to ensure that the engine can not be accidentally started.
FINISHING TOUCHES: We are at the final stages of this model. All that is left is to install the windows, cowl, wing struts and tail braces.

Starting with the windows. These are pretty straightforward to install. I was very impressed with the fit. They seemed to almost stay in place with no glue. I used Pacer Canopy Glue for attaching all the windows.

The windshield needs to be cut along the scribe line that is molded into the plastic. It is attached to the fuselage using some small self-tapping screws and canopy glue. I used some Hanger 9 Trim Tape to finish off the windshield to the fuselage.

The top window is installed on the top of the wing with 4 screws. I also used some canopy glue to ensure that it would not come off in flight.

Next, I installed the cowl. There are several places that need to be cut including the air inlets on either side of the prop shaft, the engine and muffler, and the velocity stack. Carefully make some templates to ensure that these holes are located properly. You would not want to risk ruining this beautifully done cowl. A Dremel tool with a sanding drum provides an easy, clean way to make all these cuts. The cowl is attached to the fuselage with machine screws and blind nuts (4). The final step of the cowl is to install the air cooling shroud to the top of the cowl with 5 minute epoxy.

I installed the tail braces next. They add about 4 oz. to the tail, but with the heavier G23 on the nose I figured that the tail weight might help. And I later proved that it did. To install these braces simply line them up on the tail surfaces, mark and drill the holes. They are installed with machine screws and nuts. Be sure to apply Loctite to the nuts so they do not come off in flight.

The last step on the plane is to install the wing struts. To do this you need to install the wing on the fuselage. Locate and position the correct strut on either side of the plane. You will need to attach a machine screw with a nut to either side of the landing gear to support the lower part of the strut. With them attached you will need to use the mounting brackets on the other end of the struts to locate the holes in the wing. They are there close to where they show in the pictures. It is important to find them rather than making your own because they have blind nuts already installed in the wing.
These will have to be installed and removed each time you bring the plane to the field. I would recommend having a hex driver and socket in your tool box to make this task much faster.

There is one other detail that I wanted to mention; the pilot seat. Hanger 9 gives you a very nice seat to install in the cabin. It even comes with foam cushions. I weighed the seat and found it to be about 5 oz. I decided not to use the seat for 2 reasons. First, I did not want to add any more weight. I already added almost a pound with the smoke pump, tank, and battery. The second reason is because I mounted the smoke tank in the spot that would be just under the seat. This spot is very close to the CG and I wanted to be sure that as the tank depleted it would not change the flight characteristics. The seat would need to be modified in order to fit it on top of the smoke tank. I might go back and do this after once I see how the plane performs.

Finally installed the included decals and lets go flying!

_PREFLIGHT: The Taylorcraft is now completely assembled and the last remaining steps are to check the center of gravity (CG) and the servo throws.

Hanger 9 recommends keeping the CG 4 1/4" from the leading edge of the wing. I installed a piece of tape on the bottom of the wing and marked the CG location on the tape. Then, using my 2 index fingers placed exactly on those points, I lifted the model to see how it balanced. It was right on if not a touch nose heavy, just the way I like my planes balanced.

The last step was to set the control throws. This process is very easy with the Futaba 9C radio. The manual recommends the following settings for the control surfaces throws:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevator</td>
<td>1 1/8" up and 1" down</td>
</tr>
<tr>
<td>Aileron</td>
<td>3/4" up and 5/8" down</td>
</tr>
<tr>
<td>Rudder</td>
<td>2" left/right</td>
</tr>
</tbody>
</table>

These settings were used as the low rates. I added 15% to each for high rates.

I gave the plane a final once-over and headed for the field.
My first impression of the Zenoah G23 gas engine was that it seemed a bit heavy for its size. I would later realize that this is a non issue for this aircraft. I did notice the craftsmanship on this engine is top notch. (Note: by the time you read this review, Zenoah will be replacing the G23 with the new and more powerful G26. This engine promises to produce a minimum of 20% more power.)

The G23 came with the new direct throttle linkage. You no longer have to install a bell crank to get to the throttle. Setting up the throttle was just as simple as a glow engine.

The G23 uses a magneto system for ignition rather than an external electronic ignition. There are several advantages to this design. The engine does not require a separate battery to operate and there are no extra cables or boxes to mount.

The only modification that I had to make on this engine is to drill and tap the muffler for a smoke inlet fitting.

Once we got to the field I was planning on running the engine to break it in. I fueled up the Taylorcraft with regular unleaded gasoline mixed 32:1 with Zenoah engine oil. I was very pleased to see that the G23 started right away. I noticed that the transition was not that great and it was lacking on power at full open throttle. I made a couple quick adjustments to the carburetor high and low settings and I had it purring like a kitten in no time. I used a Master Airscrew 16x8 wood prop for the initial break in flights. After the first tank I wanted to fly the plane and finish the break in while in flight.

Overall I was very impressed with the G23 and the amount of power that it produces. It was easy to install and very easy to start. This is one very reliable gas engine!

The day of the Test Flight has come. Fall in New England does not present as many nice flying days as the spring and summer. Not only is the weather getting colder, but there is always a greater chance for wind. This day was no exception. While we did luck out with a warm day, the winds were steady at 15-20 mph with gusts over 25. Not exactly the ideal conditions for a high wing plane but so I thought!
When I arrived at the field I took a few minutes to attach the wing and struts. I gave the plane a final "once-over" checking all the clevises, servos, etc. This is my first plane with a Zenoah engine. Having worked on other gas engines, I was expecting that it would take the usual lengthy time to get the proper combination of choke and throttle allowing the engine to fire. I was pleasantly surprised. I held my finger over the velocity stack and spun the prop a couple times to prime the engine. I turned off the ignition kill switch and flipped the prop a couple times and it started right up. I could not believe that this engine started so easily. I ran a tank through the engine on the ground to start the break in process, all the while debating on whether or not to fly in this wind.

TAKEOFF:
I refueled the fuel tank and filled the smoke oil tank and proceeded to the flight line. A couple quick flips and the engine started right up again. I figured I would do some taxi tests. This plane looks so nice taxing up and down the runway. It tracked perfectly straight on the ground. I looked to my friend and fellow test pilot, Charlie Cronin, to see if he wanted to give it a whirl while I took photos and video. Charlie never says no, so he took the radio and pointed it directly into the wind. He advanced the throttle to full and after about 100 feet the plane broke ground. A few clicks of up trim was needed to get her flying straight and level.

FLIGHT PERFORMANCE:
The G23 pulled the plane along in a very scale-like manner. Understanding that this plane is supposed to have some of the same flying characteristics as a Piper Cub, the first turn was coordinated with rudder as you would with a cub. Quickly we found out how effective the rudder was. The plane immediately dropped a wing in the turn. This came as quite a surprise, but would later prove to be very helpful when aerobatics are performed.

While still on low rates, Charlie attempted an aileron roll. It looked more like a barrel roll. We switched to high rates and this plane rolled as if it were an Extra 300, very axial! Another pleasant surprise. During this flight you could tell the engine was breaking in as you could feel the engine producing a bit more power. Charlie flew it for a few more passes and then handed me the controls.

AEROBATICS:
I flew a couple ovals to get used to the sensitivity of the plane. Once comfortable, I tried a few basic aerobatic maneuvers. To perform my first loop I pointed the plane into the wind and with full power I
was able to get a rather large diameter loop with no signs of the plane falling out at the top. Inverted flight required very little down elevator. I tried another loop, this time with the smoke system on. I was really happy with how much smoke the stock G23 muffler put out as I painted a large circle in the sky.

Did you notice that I did not mention the wind up to this point? That is because it was a non-issue. With wind in the 15-25 mph range, the Taylorcraft did not seem to even notice it. Never again will I be forced to sit home on a windy day! The Taylorcraft performed very well in the wind. Most of the flight was at as to full throttle. I will experiment with different props to see if the performance increases. I tried to do a stall turn and the G23 definitely does not give unlimited vertical performance. Again it flew very scale. The rudder has a lot of authority in this maneuver.

I went up a few mistakes high and lowered the throttle to test the planes stall characteristics. When it finally stalled the nose mushed over gently. To recover, simply push the nose down and add power. The last maneuver that we wanted to test was the snap roll. Again the aerobatic performance on this plane is excellent. Snaps were very crisp and stopped as soon as the controls were released.

LANDING!

LANDING:
Not knowing how much fuel we burned up, after about 20 minutes, I decided to bring it in for a landing. The setup was the same as any other plane, maintaining a glide slope by managing the power. Once the field was made, the power was chopped and it settled in much like a Piper Cub. The plane does have a tendency to float a bit so plan accordingly on final.

HANGER 9 TAYLORCRAFT VIDEO
Windows Media Player Format

CONCLUSION:
It is refreshing to have a plane in my hanger that can be flown as smooth and docile as a Sunday flyer, or hot and heavy like an Extra 300. The Taylorcraft is definitely a very versatile aircraft whose flight performance is only succeeded by it's high quality construction and beautiful finish.

SUMMARY

1-POOR 2-NEEDS IMPROVEMENT 3-AVERAGE 4-VERY GOOD 5-EXCELLENT

Take-Off:★★★★★
Landing:★★★★★
Basic Aerobatics:★★★★★
Low Speed Flight:★★★★★
High Speed Flight:★★★★★
Stall Characteristics:★★★★★
Scale Flight:★★★★★

Packaging:★★★★★
Construction:★★★★★
Hardware:★★★★★
Instruction Manual:★★★★★
Ease of Assembly:★★★★★
Kit Completeness:★★★★★
Covering Quality:★★★★★
Scale Appearance:★★★★★

HITS
- Instruction manual
- Very well constructed
- Assembly process
- Scale appearance out of the box
- Perfect entry into giant scale planes

MISSES
- The control horns supplied with the kit were designed to 3 screws but the kit and instructions only contain 2 screws.
- Music wire landing gear retainers fall off during landings.
- The lower holes for the G23 interfere with the fuel tank tray.
A thing of beauty! That is one of the many ways of describing Hanger 9’s new Taylorcraft.

This model is very well constructed and can be assembled in a couple nights by the average modeler.

Overall, I am highly impressed with Hanger 9’s newest masterpiece. As with all other Hanger 9 products that I have seen, the T-Craft’s construction, hardware and covering were all first rate. The Taylorcraft fly’s like a dream. It can be your favorite “Sunday Flyer” or an all out aerobatic performer. I would highly recommend this aircraft to anyone who is looking to get into giant scale aircraft, and want to do it in style!

December, 2002

Comments on RCU Review: Hangar 9 Clipped Wing Taylorcraft

There are no comments

The comments, observations and conclusions made in this review are solely with respect to the particular item the editor reviewed and may not apply generally to similar products by the manufacturer. We cannot be responsible for any manufacturer defects in workmanship or other deficiencies in products like the one featured in the review.

EMAIL THIS ARTICLE OR CHECK OUT THESE OTHER GREAT REVIEWS!

<table>
<thead>
<tr>
<th>Photo</th>
<th>Manufacturer</th>
<th>Product</th>
<th>Summary</th>
<th>Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tower Hobbies</td>
<td>J-3 Cub</td>
<td>With its distinctive looks, it is probably safe to say that the J-3 Cub is one of the most recognized and known airplanes in...</td>
<td></td>
<td>11/23/2015</td>
</tr>
<tr>
<td>RCGF</td>
<td>21cc Twin Cylinder Gasoline Engine</td>
<td>RCGF, a Chinese manufacturer of gasoline engines, designs and manufactures engines specifically for the RC aircraft market. ...</td>
<td></td>
<td>11/23/2015</td>
</tr>
<tr>
<td>RCGF</td>
<td>120cc Twin Cylinder Gasoline Engine</td>
<td>RCGF, a Chinese manufacturer of gasoline engines, designs and manufactures engines specifically for the RC aircraft market. T...</td>
<td></td>
<td>11/23/2015</td>
</tr>
<tr>
<td>Seagull Models</td>
<td>Maule Super Rocket 10-15cc ARF</td>
<td>When Seagull Models announced that they were going to produce not just a model, but an ARF of the Super Rocket, I just had to...</td>
<td></td>
<td>11/22/2015</td>
</tr>
<tr>
<td>Flitework</td>
<td>Edge 540</td>
<td>The Flitework Edge 540 is an electric only ARF airframe with a generous wing span of 66.9” and also beautifully dressed up in...</td>
<td></td>
<td>11/21/2015</td>
</tr>
<tr>
<td>Seagull Models</td>
<td>Steen Super Skybolt 15cc ARF</td>
<td>Seagull Models introduced this biplane early on in 2015, and SIG mfg. had a pre-production sample at the Toledo Expo. That pr...</td>
<td></td>
<td>11/20/2015</td>
</tr>
<tr>
<td>Company</td>
<td>Model</td>
<td>Description</td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>ST Model</td>
<td>Salto</td>
<td>ST model brings us a fun aerobatic glider with the H101 Salto. The self-launch electric glider has no bad tendency and will b...</td>
<td>11/19/2015</td>
<td></td>
</tr>
<tr>
<td>RCGF</td>
<td>10cc Gasoline Engine</td>
<td>RCGF, a Chinese manufacturer of gasoline engines, designs and manufactures engines specifically for 'the RC aircraft market. ...</td>
<td>11/17/2015</td>
<td></td>
</tr>
<tr>
<td>Seagull Models</td>
<td>Funky Cub 10-15cc ARF</td>
<td>The new Funky Cub has some really cool attributes, borrowed from scale aircraft, that should add up to make it a great flying...</td>
<td>11/16/2015</td>
<td></td>
</tr>
<tr>
<td>RCGF</td>
<td>20cc Gasoline Engine</td>
<td>RCGF, a Chinese manufacturer of gasoline engines, designs and manufactures engines specifically for 'the RC aircraft market. ...</td>
<td>11/15/2015</td>
<td></td>
</tr>
<tr>
<td>ST Model</td>
<td>ASW28</td>
<td>ST Model chose to reproduce the Schleicher ASW28, a single seater standard class glider capable of glide ratio up to 45. The ...</td>
<td>11/10/2015</td>
<td></td>
</tr>
<tr>
<td>The World Models</td>
<td>30% PT-17 Stearman ARF (U.S. ARMY)</td>
<td>Some may call me lucky. I would agree! One of the reasons that the PT-17 is so close to my heart is that I have a personal co...</td>
<td>10/03/2015</td>
<td></td>
</tr>
<tr>
<td>Bomberfield USA 2015</td>
<td>27th Annual B-17 Gathering</td>
<td>Every year, the end of the summer brings the big birds back to Monaville, TX, for a festive fly-in weekend at the local RC si...</td>
<td>10/03/2015</td>
<td></td>
</tr>
<tr>
<td>Seagull Models</td>
<td>T-34 Mentor</td>
<td>Seagull Models, distributed by SIG manufacturing in the US, has recently introduced their own version of this prop-driven mil...</td>
<td>09/20/2015</td>
<td></td>
</tr>
<tr>
<td>RCGF</td>
<td>120cc Twin Cylinder Gasoline Engine</td>
<td>While RC gas engines have been around for quite a while, the demand for high quality twin cylinder variants is fairly recent....</td>
<td>09/13/2015</td>
<td></td>
</tr>
</tbody>
</table>